Legendre polynomials and supercongruences
نویسنده
چکیده
Let p > 3 be a prime, and let Rp be the set of rational numbers whose denominator is not divisible by p. Let {Pn(x)} be the Legendre polynomials. In this paper we mainly show that for m,n, t ∈ Rp with m 6≡ 0 (mod p), P[ p 6 ](t) ≡ − (3 p ) p−1 ∑ x=0 (x3 − 3x + 2t p ) (mod p)
منابع مشابه
Congruences concerning Legendre Polynomials
Let p be an odd prime. In the paper, by using the properties of Legendre polynomials we prove some congruences for È p−1 2 k=0 2k k ¡ 2 m −k (mod p 2). In particular, we confirm several conjectures of Z.W. Sun. We also pose 13 conjectures on supercongruences.
متن کاملJ. Number Theory 143(2014), no.3, 293-319. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES
Abstract. For any positive integer n and variables a and x we define the generalized Legendre polynomial Pn(a, x) by Pn(a, x) = Pn k=0 a k −1−a k ( 1−x 2 ). Let p be an odd prime. In this paper we prove many congruences modulo p related to Pp−1(a, x). For example, we show that Pp−1(a, x) ≡ (−1)〈a〉p Pp−1(a,−x) (mod p), where a is a rational p− adic integer and 〈a〉p is the least nonnegative resid...
متن کاملNumerical Calculation of Fractional Derivatives for the Sinc Functions via Legendre Polynomials
This paper provides the fractional derivatives of the Caputo type for the sinc functions. It allows to use efficient numerical method for solving fractional differential equations. At first, some properties of the sinc functions and Legendre polynomials required for our subsequent development are given. Then we use the Legendre polynomials to approximate the fractional deri...
متن کامل